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Abstract
We consider the effect of memory-dependent transport on the survivability of a
population dispersing in a closed domain surrounded by a hostile environment.
The model we use combines memory-dependent diffusion with Malthusian
growth. The former introduces an additional parameter, the correlation time
for memory effects, that must be taken into account in determining the critical
length below which survival does not occur. Results are obtained for all possible
parametric conditions, and the relevance to non-linear growth conditions is
discussed.

PACS numbers: 05.45−a, 82.40.Ck

1. Introduction

Fisher’s equation [1] describes the dispersal of a growing population through a superposition
of simple diffusive motion and logistic growth. The resulting equation, non-linear due to
the logistic self-regulation term, has been the subject of considerable interest and study and
applied in a wide variety of contexts [1–3]. When the growth is Malthusian, the resulting
linear equation provides the basis for obtaining exact analytical results that, with the proper
interpretation, describe important aspects of the non-linear problem with logistic growth.
Important examples are the minimum wave speed of a travelling wave in an unbounded domain
[4], and the critical length below which the population does not survive in a bounded domain
[5]. We will be concerned with the latter property here in the context of a model proposed
earlier [6] to investigate the effects of transport memory on the properties of travelling wave
solutions. An alternative approach to introducing non-local (in time) diffusive effects with
application to the identical problem has also been recently considered [7].

Simple diffusion is a long-time limit of a transport process that may have a spectrum
of scattering frequencies and a finite signal speed. The latter can be modelled by replacing
the local diffusion operator by a non-local operator that includes a memory function with a
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correlation time that characterizes the transition to diffusive motion [8]. When the memory
function is exponential [6], as we also consider here, the equation for dispersal without growth
is equivalent to the telegrapher’s equation which has frequently been used as a model for
dispersal [9–11].

In [6] the non-linear Fisher equation with the transport term modified to include memory
effects was studied relative to the possible speeds for travelling wave solutions. The
introduction of a correlation time characterizing the memory effects led to a variety of possible
outcomes depending on the interplay of the system parameters; similar results were also
obtained in [7]. In this paper we consider the impact of memory effects in determining the
critical length below which the population cannot survive. To do this we make use of the
analytically tractable Malthusian growth model. For the case of simple diffusion, i.e. when
the memory function is a delta function (zero correlation time), this is known as the KISS
length [12, 13], and it separates domains in which the population does not survive from those
in which growth continues without bound (i.e. it is a bifurcation point). It can be shown [5]
that when growth is logistic this length remains the same but when the domain size exceeds
this the self-regulation imposed by the non-linear logistic term leads to a patterned steady
state. This can be proved rigorously [14, 15] for the case of simple diffusion, but the proof
is based on properties of partial differential equations that cannot be applied here since we
are considering an integro-diffential equation. Here, it seems reasonable to conjecture that
logistic self-regulation would also result in a steady state above the KISS length. Therefore,
the significance of the results obtained here should be to describe the parameter space dividing
survival from non-survival. We will show that the addition of the correlation time as a
parameter again leads to a greater variety of possible outcomes than can occur for simple
diffusion.

In the next section we obtain a general equation describing the Fourier coefficients of the
population density satisfying the memory-dependent evolution equation introduced in [6] for
the case of a bounded domain surrounded by a hostile environment. The behaviour of these
coefficients depends on the relative magnitudes of the system parameters as well as the Fourier
index. We consider the special case where the inverse correlation time is equal to the intrinsic
growth rate in section 3 and in section 4 we then consider the more general case where these
differ. The results found are discussed in section 5.

2. Analysis

Our starting point is the following equation describing the dispersal of a population having
density n(x, t) in the domain 0 � x � L surrounded by a hostile environment so that
n(0, t) = n(L, t) = 0:

nt = Da

∫ t

0
dt ′ e−a(t−t ′) nxx(x, t ′) + rn(x, t). (1)

The parameters are r the intrinsic growth rate, D the diffusion coefficient and a the inverse
correlation time. In the limit a−1 → 0 the transport term reduces to that for simple diffusion.
Equation (1) is equivalent to a telegrapher’s equation; this follows from differentiation with
respect to the time variable and substitution into the resulting equation for the integral term.
We comment on this further later, but proceed here by considering equation (1) directly.

If we expand n in the Fourier sine series we can obtain an equation for the coefficients
An(t) directly from equation (1); for now we assume that as for the case of simple diffusion
we only need to consider A1 but we may note that if n(x, 0) = no sin(πx/L) then An = 0 for
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n > 1. Introducing Laplace transforms, which we denote with the transform variable s in the
argument, e.g., An(s), then from equation (1) it follows that

An(s) = (s + a)

s(s + a) + Kn − r(s + a)
Ano (2)

where Kn = (nπ/L)2 Da, Ano = An(t = 0). If the memory function were a delta function we
could neglect s compared to a and

An(s) ≈ Ano

(s + K∗
n − r)

⇒ An(t) = exp −t (K∗
n − r) (3)

where K∗
n = a−1Kn, and the critical length L∗ follows from K∗

n = r with n(x, t) → 0 for L <

L∗ and n(x, t) → ∞ for L > L∗ as t → ∞. For finite a equation (2) requires consideration of
a wider range of interplay among the parameters.

3. Case I: r = a

When r = a and K1 > a2 we have

A1(s) = (s + a)A1o

s2 + (K1 − a2)
(4a)

so that

A1(t) = A1o[cos(K1 − a2)1/2t + a(K1 − a2)−1/2 sin(K1 − a2)1/2t] (4b)

which becomes negative for values of t for which [K1− a2]1/2t is in the third quadrant; the
population does not survive. For r = a, K1 < a2 we find

A1(t) = A1o[cosh(a2 − K1)
1/2t + a(a2 − K1)

−1/2 sinh(a2 − K1)
1/2t] (5)

which grows without bound. Similarly, if K1 = a2 = r2 then A1(t) = A1o[1 + at] and again
grows without bound (but much slower). For initial conditions such that some of the An �= 0
for n > 1, e.g., a delta function at x = L/2, then for some value of n > 1, Kn > a2. Comparing
equations (4) and (5) we see that in this case the growth terms will dominate and the above
conclusion remains valid. The previous result for K1 > a2 also follows for arbitrary initial
condition.

4. Case II: r �= a

To begin we look at the special sub-case where K1 = ra so that

A1(s) = (s + a)A1o

s[s + (a − r)]
. (6a)

leading to

A1(t) = A1o

[
exp −(a − r)t +

a

(a − r)
(1 − exp −(a − r)t)

]
. (6b)

If r > a this grows without bound but if r < a we have a non-trivial steady-state limiting
solution. When K1 �= ra we have

A1(s) = (s + a)A1o

s2 + s(a − r) + (K1 − ra)
= (s + a)A1o

(s − s1)(s − s2)
(7)

with

s1,2 = 1
2

[
(r − a) ±

√
(r − a)2 − 4(K1 − ra)

]
. (8)
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Consider first ra > K1 with r > a so that s1 > 0, s2 < 0 and both are real. Then

A1(t) = A1o[(s1 + a) exp s1t − (s2 + a) exp s2t]

(s1 − s2)
(9)

which grows without bound. When r < a, ra > K1 there are again two real roots with s1 > 0,
s2 < 0 and the above conclusions again follow (s1 and s2 differ in each case, but this does not
affect the qualitative result).

When ra < K1 we first re-write equation (8) as

s1, s2 = 1
2

[
(r − a) ±

√
(r + a)2 − 4K1

]
(10)

and distinguish between (r + a)2 > 4K1 and (r + a)2 < 4K1. In the former case, when r > a,
s1 > s2 > 0 so that A1(t) is again given by equation (9) and grows without bound. Also, when
r < a then s1 < s2 < 0 and the population does not survive, i.e. A1(t) will decay to zero. The
remaining possibility is for (r + a)2 < 4K1 in which case s1 = 1

2 [(r − a) + iσ ], s2 = s̄1, where

σ =
√

(4K1 − (r + a)2 and the overbar denotes complex conjugate. From equation (7) it then
follows that

A1(s) = (s + a)A1o

[s − (r − a)2/2 + σ 2/4]
(11)

and

A1(t) = A1o exp(r − a)
t

2

[
cos

σ t

2
+

(a + r)

σ
sin

σ t

2

]
. (12)

Regardless of whether r is greater or less than a this becomes negative for σ t/2 in the third
quadrant indicating the population does not survive.

5. Discussion

The above results indicate that memory effects can have a profound influence on the
survivability conditions for a population that is undergoing Malthusian growth in a bounded
domain surrounded by a hostile environment. When the correlation time is equal to the birth
rate (section 3) the critical length is equal to that for simple diffusion but L = L∗ does not
provide a steady state here. The conditions for a steady state are K1 = ra with r < a. This
is an exact result for n(x, 0) = no sin(π x/L). For more general initial conditions we cannot
rigorously prove that the higher Fourier coefficients will alter this conclusion since the classical
Sturm–Liouville theory [16] does not apply here. However, this result is moderately robust
since for K1 = ra we will have Kn > ra and we have shown that when (r + a)2 > 4Kn or
(r + a)2 < 4Kn and r < a that the An will decay. The critical length here is the same as for
simple diffusion, but the steady-state population density is greater by a factor a

a−r
due to the

fact that transport to the hostile boundaries is retarded allowing additional births to occur.
This interpretation is consistent with the travelling wave analysis of [6]. This difference is not
immediately apparent if instead of equation (1) we had considered the telegrapher’s equation
derived from it [cf equation (3) of [6])

ntt + (a − r)nt = Da nxx + arn (13)

and naively looked for steady-state solutions by setting the left side equal to zero. Since the
resulting equation is identical to that for simple diffusion it might be intuited that the steady-
state density also remains unchanged. But that solution requires that the full time-dependent
equation (5) be taken into account and, it is easily seen that when n is again written as a Fourier
sine series, the Laplace transform of equation (13) with equation (1) leads to equation (2) and
the results obtained above.
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In summary, we have considered population dispersal in a bounded domain surrounded
by a hostile environment as a superposition of memory-dependent transport and Malthusian
growth. This introduces another parameter, a, the inverse correlation time, that must be taken
into account in determining the conditions for which the population grows, dies or reaches a
steady state. We conjecture that, as for simple diffusion, when growth self-regulation occurs,
as through the addition of a non-linear logistic term, the conditions for which we found growth
will correspond to those for which a steady state is attained. These are for K1 � ra and K1 >

ra with (r + a)2 > 4K1, r > a. However, we would expect that when memory effects do occur
r < a will be most likely since a → ∞ corresponds to simple diffusion.

References

[1] Fisher R 1936 Ann. Eugen. 7 355
[2] Murray J 1989 Mathematical Biology (New York: Springer)
[3] Grindrod P 1996 The Theory and Applications of Reaction–Diffusion Equations (Oxford: Oxford University

Press)
[4] Shigesada N and Kawasaki K 1997 Biological Invasions: Theory and Practice (Oxford: Oxford University

Press)
[5] Skellam J 1951 Biometrika 38 196
[6] Abramson G, Bishop A and Kenkre V 2001 Phys. Rev. E 64 066615
[7] Kar S, Banik S and Ray D 2003 J. Phys A: Math. Gen. 36 2771
[8] Kenkre V 1977 Statistical Mechanics and Statistical Methods in Theory and Application ed U Landman

(New York: Plenum)
[9] Goldstein S 1951 Q. J. Mech. Appl. Math. 4 129

[10] Hamilton E 1993 Am. Naturalist 142 779
[11] Huchital D, Hollinger H and Holt E 1969 Phys. Fluids 12 1691
[12] Okubo A 1980 Diffusion and Ecological Problems: Mathematical Models (New York: Springer)
[13] Kierstead H and Slobotkin L 1953 J. Mar. Res. 12 141
[14] Alexander J and Antman S 1983 Indiana Univ. Math. J. 32 39
[15] Rabinowitz P 1971 J. Funct. Anal. 7 487
[16] Titchmarsh E 1964 Eigenfunction Expansions Associated with Second-Order Differential Equations (Oxford:

Oxford University Press)


